

Fourier Interpolation on an FPGA

Department of Electrical and Computer Engineering
Signal Processing Research Laboratory

Danny Toma and Ashkan Ashrafi

2

Table	of	Contents	
Introduction .. 3

Theory ... 4

Design Considerations ... 5

Conversion and Sampling Rates ... 8

Setup ... 8

Implementation ... 10

Generating Coefficients ... 12

Clock Divider.. 16

Test and Verification .. 18

Appendix ... 20

References .. 30

 	

3

Introduction	

This paper describes the implementation of a real-time interpolator on an FPGA. The interpolator
utilizes a method based on the 1-D Discrete Cosine Transform (DCT). The software required for this
includes Xilinx ISE 14.4 and MATLAB. Knowledge of Verilog HDL and familiarity with MATLAB are
required. In addition, experience with the Discrete Fourier Transform is required to understand the
design. The physical requirements for this project are,

o Virtex 5 ML506 with Xilinx JTAG programmer
o Diligent Pmod1 AD1
o Diligent Pmod1 DA2
o Oscilloscope
o Function Generator

 	

4

Theory	

Interpolation is the construction of new data points, based on the given discrete points of a signal. The
method used to interpolate in this design is based on the Discrete Cosine Transform (DCT). A signal that
is band limited can be exactly interpolated by taking the Discrete Fourier Transform (DFT) and padding
zeroes to the end of the spectrum. If one mirror extends the data points prior to taking the DFT, it would
be equivalent to the Type-II DCT. The equations for the DCT and the inverse DCT are

𝑋"[𝑘] = 2∑ 𝑥[𝑚] ∗ 𝑐𝑜𝑠 /01(3456)
38

98:6
;<= 	 , k = 0, 1,…M − 1		 (1)

𝑥[𝑚] = 6
8
∑ 𝑋"[𝑘] ∗ 𝑏[𝑘] ∗ 𝑐𝑜𝑠 /

01(3456)
38

98:6
1<= , m = 0, 1,…M − 1	 (2)

where 𝑏[0] = 6
3	

 and 𝑏[𝑘] = 1 for 𝑘 = 1, 2…𝑀 − 1.

In some texts, these formulas rearrange the constants at the beginning of the equation to make the
transform orthogonal; however, for this design, it is not necessary. In order to interpolate, we must take
the forward DCT of a signal, and then take the inverse DCT of the zero-padded transform. We can
represent the forward DCT as a matrix with m in the columns and k in the rows,

2

⎣
⎢
⎢
⎢
⎢
⎢
⎡

"MN(=)
3

"MN(=)
3

. . "MN(=)
3

𝑐𝑜𝑠(0
38
) 𝑐𝑜𝑠(O0

38
) 𝑐𝑜𝑠(P0

38
) . .

. 𝑐𝑜𝑠(Q0
38
) . . .

.
𝑐𝑜𝑠((8:6)0

38
) . . . 𝑐𝑜𝑠(0(8:6)(3(8:6)56)

38
)⎦
⎥
⎥
⎥
⎥
⎥
⎤

By multiplying this matrix by the extended inverse DCT matrix, the outcome is a matrix that may be
multiplied by the sampled sequence to achieve an interpolated sequence (as will be seen in (4)). First,
however, we must modify the inverse DCT to fit our application. We can zero-pad the DCT by only
utilizing a summation of M points and multiplying the denominator of the cosine by N. Also, we apply a
shift to the cosines in order to have x[n] = x[mN]. The resultant IDCT equation is

𝑥[𝑛] = 6
8
∑ 𝑋"[𝑘] ∗ 𝑐𝑜𝑠 /

01(3;5V)
3∗V∗8

98:6
1<= , 𝑛 = 0, 1, … 	𝑁 ∗ 𝑀 − 1	 (3)

where N is an integer and the scaling factor.

5

The matrix for the inverse transform is

1
𝑀

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑐𝑜𝑠(0) 𝑐𝑜𝑠(

𝑁𝜋
2𝑁𝑀

) 𝑐𝑜𝑠(
2𝑁𝜋
2𝑁𝑀

) . 𝑐𝑜𝑠(
(𝑀 − 1)𝑁𝜋
2𝑁𝑀

)

𝑐𝑜𝑠(0) 𝑐𝑜𝑠(
(2 + 𝑁)𝜋
2𝑁𝑀

) 𝑐𝑜𝑠(
(2 + 𝑁)2𝜋
2𝑁𝑀

) . .

. 𝑐𝑜𝑠(
(4 + 𝑁)𝜋
2𝑁𝑀

) . . .
.
.
.
.

𝑐𝑜𝑠(0) . . . 𝑐𝑜𝑠(
𝜋(𝑀 − 1)(2(𝑀𝑁 − 1) + 𝑁)

2𝑁𝑀
)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

If A is the DCT matrix and B is the inverse DCT matrix, then x[m], a row vector of M samples, can be
interpolated by doing the multiplication in Equation 4 and x[n] becomes an M*Nx1 row vector.

𝑥[𝑛] = 3
8
(𝐁𝐀)𝑥[𝑚]	 (4)

Design	Considerations	

In order to interpolate in real time, the processing is done in frames. As explained in the previous Theory
section, the size of the frame is M. For this implementation, M is fixed to four. Another aspect of the
design that must be considered is the upscaling factor, N. In this design, the number N is user defined
and parametric. It should be noted that N must be an integer. For the demonstration, we assign the
upscaling factor, N, to four. If a different upscaling factor is desired, simply assign it to N in the top
module and carry out the rest of the procedure with the corresponding factor in mind. An example of
the processing frame is illustrated in the Figure 1.

Figure 1:Four point processing frame using DCT/IDCT

6

In the design from Figure 1, four DCT coefficients are needed for every newly constructed data point.
The design implements N*3 impulse responses, each of which are specifically dedicated to a point on
the new, upsampled sequence. These sub-responses can be represented by a row of four points from
the resulting matrix of Equation 4. The responses are as follows,

𝐻(𝑧) =

ℎ=[0] +						ℎ=[1]𝑧:6 +							ℎ=[2]𝑧:3 +							ℎ=[3]𝑧:O

ℎ6[0] +						ℎ6[1]𝑧:6 +								ℎ6[2]𝑧:3 +							ℎ6[3]𝑧:O
. . . .
. . . .
. . . .

ℎOV:6[0] +				ℎOV:6[1]𝑧:6 +				ℎOV:6[2]𝑧:3 +				ℎOV:6[3]𝑧:O

	

The 4 point processing frame requires 4 coefficients for every row; thus, a total of N*3*4 coefficients are
needed. We can reduce the number of coefficients by refreshing the frame every sample and only
interpolating on the final data points. Specifically, interpolants are only inserted between x[2] and x[3]
(the original third and fourth samples). To do this, we can utilize rows 2*N to 3*N-1. The rows for the
processing frame are as follows,

𝐻(𝑧) =

ℎ3V[0] +						ℎ3V[1]𝑧:6 +										ℎ3V[2]𝑧:3 +						ℎ3V[3]𝑧:O

ℎ3V56[0] +		ℎ3V56[1]𝑧:6 +					ℎ3V56[2]𝑧:3 +		ℎ3V56[3]𝑧:O
. . . .
. . . .
. . . .

ℎOV:6[0] +		ℎOV:6[1]𝑧:6 +						ℎOV:6[2]𝑧:3 +		ℎOV:6[3]𝑧:O

This means that only N*4 coefficients are needed rather than N*4*3. Basically, the design is a moving
version of the illustration in Figure 2.

Figure 2:Processing frame between x[2] and x[3]

7

To verify, we have applied a test signal and interpolated based on the moving four point frame from
Figure 2. Figure 3 shows an example of the original signal, x[m] and the interpolated version, x[n].

Figure 3:Test signal (above) and interpolated signal using moving frame (below)

Another parameter that must be set is SIZE. This is equal to the number of bits needed to represent the
integer N. For the demonstration, N is four; thus, we only need SIZE to be equal to 2 bits. Again, this is
set in the top module.

8

Conversion	and	Sampling	Rates	

Two external devices interface with the ML506 board. The PMOD AD1 and PMOD DA2 act as the input
and output of the overall system. In order to digitize a signal, the PMODAD1 is used. It contains two
AD7476A chips from Analog Devices. The DAC121S101 chip from National Semiconductor is used on the
PMODDA2 to output the signal and the new data points. Both devices use Serial Peripheral Interface
(SPI) and the module DAC_OUT is used to interface with the external boards.

The clocking speed on board of the ML506 is 100MHz. Both PMOD boards can only be clocked at a
maximum frequency of 20 MHz. To be well within spec, we can bring the clock speed down to the 10
MHz. This will be done using the clock manager in a following section. A single conversion for both the
ADC and the DAC takes at least 28 external clock cycles in this design. The DAC_OUT module gives the
user the ability to change the conversion frequency by setting the parameter WAIT_TIME in the top
module. This parameter must be calculated by the formula below. It should be noted that the sampling
frequency of the output is the Desired Frequency from the equation below. For the ADC frequency,
simply divide the Desired Frequency by the scaling factor, N. For the demonstration, the desired
frequency is 192 KHz so the parameter WAIT_TIME is set to 24.

𝐷𝑒𝑠𝑖𝑟𝑒𝑑	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 	 10×106

28+WAIT_TIME
	𝐻𝑧				 (5)

Setup	

At this point, we are ready to implement the design. Power up the ML506 and find a Xilinx JTAG
programmer to connect to the desktop and the FPGA. The PMODs will be placed on the J6 header pins.
The AD1 will have pin 1 going to pin 38 on the ML506 and the DA2 will have pin 1 going to pin 52. This is
illustrated in Figure 4.

Figure 4:J6 headers on ML506 and PMOD connectors

9

Connect the ground to the designated pins on both boards. The ML506 has a ground pin in the last row,
of the center column on the J6 header. Also, there are pins that output 3.3V. Jump these to the circuit to
make the correct connections to the ADC and DAC. Next, connect the function generator and scope
probes to A0 (first pin of the ADC), D0 (first pin of DAC), and D1 (third pin of the DAC) respectably. The
setup is illustrated in Figure 5 and Figure 6.

Figure 5:Scope probes (black) connected to DAC
and function generator (red) connected to ADC

Figure 6:Board setup and ML506 orientation

 	

10

Implementation	

Now that we have the physical setup, we open up Xilinx ISE to implement the design. Create a
designated folder for the modules in any appropriate directory. In Xilinx, select File, New Project. The
window in Figure 7 will pop up.

Figure 7:New Project Wizard

Name the project DCT_Interpolation. Match the project settings with the ones illustrated in Figure 8.

Figure 8:Project settings

11

Add a Verilog Module by selecting Project, New Source. A window will appear. Select Verilog Module
and name it TopLevel as shown in Figure 9.

Figure 9:New verilog source for top module

Copy the DCT INTERPOLATION code from the Appendix and paste it into the module. After saving the
code, it is evident that there seems to be missing modules from the top level. This is where the
coefficient look up table and clock divider will be. Prior to inserting these, however, we can map the IO’s
to our design by adding a User Constraints File. Select Project, New Source, and select Implement
Constraints File. Name the file “board”. Copy and paste the following code for the .ucf file.

INTERNAL CLOCK 100 MHz
 NET "CLK_100" LOC = "AH15";

PMOD AD1
 NET "CS" LOC = "AE32"; // Pin 38 on ML
 NET "Din" LOC = "AG32"; // Pin 40 on ML
 NET "ADC_CLK" LOC = "AK34"; // Pin 44 on ML

 # Pmod DA2 DAC Pins on J6 Header
 NET "SYNC" LOC = "AL34"; // Pin 52 on ML
 NET "DO" LOC = "AL33"; // Pin 54 on ML
 NET "DO_2" LOC="AM33"; // Pin 56 on ML
 NET "DAC_CLK" LOC = "AJ34"; // Pin 58 on ML

 # RESET
 NET "RST" LOC = "V8"; // GPIO South Buttton on Board

 # PMOD AD1
 NET "CS" FAST; // Pin 38 on ML
 NET "ADC_CLK" FAST; // Pin 40 on ML

 # Pmod DA2 DAC Pins on J6 Header
 NET "SYNC" FAST; // Pin 52 on ML
 NET "DO" FAST; // Pin 54 on ML
 NET "DO_2" FAST; // Pin 56 on ML
 NET "DAC_CLK" FAST; // Pin 58 on ML

12

When saved, the project should look like Figure 10.

Figure 10: Project after saving .ucf file

Generating	Coefficients	

The implementation is similar to a four tap FIR filter; however, we need to have coefficients for each
index rather than one set impulse response. These coefficients are based on Equation 5 and can be
placed into a ROM. To generate the coefficients, we must first use MATLAB. Create a new script in
MATLAB and insert the code provided in the Appendix. Set the variable named SCALE to the integer N
that was chosen for this design. Run the script. A new .coe file named mycoefile will be saved in the
MATLAB directory as illustrated in Figure 11.

Figure 11:Path to .coe file from MATLAB

Due to MATLAB generating coe files that are not compatible with any recent versions of Xilinx, we need
to manually alter the file. When selected, the coe file will open in a text editor. Remove the text “Radix =
… CoefData =” and replace it with the following text as shown in Figure 12 and Figure 13.

memory_initialization_radix=2;
memory_initialization_vector=

13

Verify that the beginning of the file looks identical to the Figure 13. Save the file and exit MATLAB. Do
not rerun the script. That would reformat the file back to the incorrect form.

Figure 12: Incorrect format for .coe file

Figure 13:Correct format for .coe file

Next, we can insert this ROM by using the Xilinx IP tool. Select Project and New Source. On the window
that pops up, select IP (CORE Generator and Architecture Wizard) and name the file LUT. The name of
the module is significant as it is called in the top level of the project. In Memories and Storage, RAMs &
ROMs, select Block Memory Generator (Figure 14).

Figure 14:IP Core Wizard directory

14

 A wizard will appear (Figure 15). Go to the second page of the wizard and select Single Port ROM as
illustrated in Figure 16.

Figure 15:Block Memory Generator initial window

Figure 16:Single Port ROM

15

 On the next page, input 16 for the Read Width. The Read Depth is equal to the parameter N*4.

Figure 17:Size of Memory

Finally, load the .coe file on page 4 by selecting browse and finding the correct file from the MATLAB
directory. It is placed in DOCUMENTS/MATLAB folder.

Figure 18: Loading of .coe file

16

To verify that the coefficients are properly loaded into the ROM, select Show to view the contents. After
verification, select Generate.

Figure 19: Coefficients correclty inserted into memory

Clock	Divider	

The final component that must be added to the design is the DCM clocking manager. Create a new IP
Core source as done in the previous section, but this time, name it CLK_DIV. Again the name should be
exactly the same in order to instantiate it from the top module. Select next and find the “Double clock
frequency (DCM)” under FPGA Features and Designs, Clocking, Virtex 5, and Choose wizard by basic
function (Figure 20).

Figure 20: Clock Manager in IP Core Wizard directory

17

Next, a window will appear asking for the HDL that is in use. Select Verilog as shown below.

Figure 21: HDL Selecton

On the pop-up window that appears, select the CLKDV component, input 100 to the Input Clock
Frequency, and select 10 for the Divide By Value (Figure 22). Verify that the wizard looks identical to
Figure 22. Generate the clock divider by clicking next for the remaining windows. When the core is done
loading, all modules instantiated in the top level should be present.

Figure 22: Clocking options for DCM

18

Test	and	Verification	

With all parameters set and all modules ready, we can select Generate Programming File (Figure 23).
When the Xilinx is done loading, program the FPGA using IMPACT and assign the corresponding
configuration file to the device.

Figure 23: Generate programming file for target device

By connecting the probes to pins 38 and 52 on the J6 header, you are able to view the enable for the
ADC and DAC. Notice that the ADC and DAC are both active low. As illustrated on the scope, SYNC, the
yellow signal, is enabled N times more than CS, the blue signal. Also, the frequency of CS is
approximately 48 KHz, four times less than the desired frequency of 192 KHz. Prior to inserting a signal
into the system, it should be mentioned that the ADC and DAC only operate with positive voltages; thus,
if one inserts a signal straight from the function generator, an offset must be used to place the signal in
the proper range (0-3.3V). Input a signal to the ADC.

Figure 24: Enable for DAC (yellow) and ADC (blue)

19

When observing signals at the input and the output, the signal should be uninterrupted. Again, the
intention is not to alter the content of the signal; rather, the goal is simply to change the resolution of
the output. Raise the frequency to near half of the sampling frequency. If the scope is used to runstop
and zoom in on the signal, as illustrated in Figure 26, cursors may be used to view the sampling period.
Notice the stair-like nature of the signal in Figure 26. The cursors show that the width of the steps in
time is approximately 5.2μs. This translates to an output rate of approximately 192 KHz and verifies that
that the sampled signal is being interpolated.

Figure 25:Signal at the input and output

Figure 26: Zoomed in scope shot

20

Appendix	

//DCT INTERPOLATION in Verilog HDL

`timescale 1ns / 1ps
//
// Create Date: 13:15:07 06/28/2014
// Design Name: DCT INTERPOLATION
// Module Name: TopModule_1
// Target Devices: Virtex 5, ML506
// Tool versions: Xilinx ISE 14.4
// Description: This design is a real-time interpolator that is based on the DCT
// Parameters: N is the upsampling integer.
// SIZE must be set to the number of bits needed to suppord the integer N
// WAIT_TIME allows the user to change the sampling frequency
//
module TopModule_1#(parameter N=4, WAIT_TIME=78, SIZE=2)
 (Din, CLK_100, RST,CS, ADC_CLK, SYNC, DO, DO_2, DAC_CLK);

 input Din;
 input CLK_100;
 input RST;
 output CS;
 output ADC_CLK;
 output SYNC;
 output DO;
 output DO_2;
 output DAC_CLK;

 wire [11:0] value_out;
 wire [11:0] value_in;
 wire [SIZE+1:0] coef_index;
 wire [11:0] sample;
 wire [15:0] dct_coeff;

 wire [16:0] mat;
 wire mult_en;
 wire mult_done;

 wire CLK;

// wire CLK; // TEST
// assign CLK=CLK_100; // TEST

 assign ADC_CLK=CLK;
 assign DAC_CLK=CLK;

21

 MAC #(4) UU1 (
 .CLK(CLK), // in from ML506
 .en(mult_en),// in from DCT
 .A(sample),// in 12 bits from DCT
 .B(dct_coeff), // in 16 bits from LUT
 .MULT_COMPLETE(mult_done),// out to DCT
 .FINAL(mat)// out 16 bits to DCT
);

 DCT #(.N(N),.RANGE(SIZE)) UU2 (
 .CLK(CLK), // in from ML506
 .SAMPLE(value_in), // in 12 bits from DAC_OUT
 .RST(RST), //in
 .DAC_done(dac_done),// in from DAT_OUT
 .MULT_done(mult_done), // in from MAC
 .COEF(mat), // in 16 bits from MAC
 .MULT(sample), // out 12 bits to MAC
 .en_MULT(mult_en), // out to MAC
 .COEFFICENT(coef_index), // out to LUT
 .ADC_en(adc_en), // out to DAC_OUT
 .UPSAMPLE(value_out)// out 12 bitsto DAC_OUT
);

 (* BOX_TYPE = "user_black_box" *)

 LUT UU3 (
 .clka(CLK), // input clka
 .addra(coef_index), // input
 .douta(dct_coeff) // output [15 : 0] douta
);

 DAC_OUT #(WAIT_TIME)
 UU4 (
 .CLK(CLK),// 100 MHz Clock
 .RST(RST),
 .VALUE_OUT(value_out), // output 12 bit from DCT to DO
 .DI(Din), // input
 .ADC_EN(adc_en), // input
 .VALUE_IN(value_in), // input 12 bit to DCT
 .CS(CS), // output
 .DCLK1(CLK), // output
 .SYNC(SYNC), // output
 .DO(DO), // output
 .DO_2(DO_2), // output
 .DAC_DONE(dac_done) // output to DCT

22

);

 CLK_DIV UU5 (
 .CLKIN_IN(CLK_100),
 .CLKDV_OUT(CLK),
 .CLKIN_IBUFG_OUT(), // Unconnected
 .CLK0_OUT() // Unconnected
);

endmodule

`timescale 1ns / 1ps
//
// Create Date: 20:27:34 05/01/2014
// Description: This is a MAC that only Adds four levels at a time. "en" initiates
// the process. MULT_COMPLETE Goes high when MAC is done and the output
// retains the correct value until reset.
//
module MAC #(parameter SIZE=4)
 (input CLK, en,
 input signed [11:0] A,
 input signed [15:0] B,
 output reg MULT_COMPLETE,
 output signed [16:0] FINAL
);

 reg [4:0] COUNT;
 wire signed [28:0] Temp1;
 reg signed [30:0] Temp2;

 assign Temp1=$signed({1'b0,A})*$signed(B);// Multiply
 assign FINAL=Temp2[30:14];

 always@(posedge CLK)
 begin

 if(en)
 begin

 if(COUNT < (SIZE))
 begin
 COUNT<=COUNT+1;
 Temp2<=Temp1+Temp2; // Accumulate

23

 end

 else
 // raise COMPLETE flag and output the high 16 bits
 MULT_COMPLETE<=1;

 end // end if(en)

 else
 begin
 // RESET
 MULT_COMPLETE<=0;
 COUNT<=0;
 Temp2<=0;
 end

 end // always

 initial
 begin
 // Initial Conditions
 COUNT=0;
 Temp2=0;
 MULT_COMPLETE=0;
 end

endmodule

//
// Create Date: 10:23:17 04/28/2014
// Module Name: DAC_OUT
// Description: The DAC_OUT module is the front end of the design. It interfaces
// directly with the PMOD boards.
//
module DAC_OUT#(parameter ADDED_TIME=12)
 (input CLK, RST,
 input [11:0] VALUE_OUT, //TO DAC
 input DI,
 input ADC_EN,
 output reg [11:0] VALUE_IN, // TO FPGA for Processing
 output reg CS,
 output DCLK1,
 output reg SYNC, DO, DO_2, DAC_DONE);

 // Used to input and output when enabled
 reg [4:0] COUNT;

24

 // temp register for original samples
 reg [11:0] Temp;

 integer TIMER=0;

 assign DCLK1=CLK;

 always@(posedge CLK)
 begin
 if(~RST)
 begin
 COUNT<=COUNT+1;

 if(COUNT<11)
 begin
 DO<=0;
 DO_2<=0;
 DAC_DONE<=0;
 end

 // Begin data conversion by setting ADC and DAC to '0'
 else if(COUNT >= 11 && COUNT <= 14)
 begin
 SYNC<=1'b0;
 if(ADC_EN)
 CS<=1'b0;
 DO<=0;
 DO_2<=0;
 end

 // 12 bit words are sent and recieved
 else if(COUNT<=26)
 begin
 DO<=VALUE_OUT[26-COUNT];
 DO_2<=Temp[26-COUNT];

 if(ADC_EN)
 begin
 VALUE_IN[0]<=DI;
 //Shift Data Into ADC
 VALUE_IN[11:1]<=VALUE_IN[10:0];
 end
 end

 // Turn off enablers
 else if(COUNT==27)
 begin
 Temp<=VALUE_IN;

25

 CS<=1'b1;
 SYNC<=1'b1;

 if(TIMER==ADDED_TIME)
 begin
 COUNT<=0;
 TIMER<=0;
 DAC_DONE<=1;
 end

 else
 begin
 COUNT<=COUNT;
 TIMER<=TIMER+1;
 DAC_DONE<=0;
 end

 end

 end //RST

 else
 COUNT<=0;

 end

 initial
 begin
 CS=1;
 DAC_DONE=0;
 COUNT=0;
 SYNC=1;
 end

endmodule

`timescale 1ns / 1ps
//
// Create Date: 01:01:16 05/15/2014
// Module Name: DCT
// Description: This module acts as the controller for the design.
//
module DCT #(parameter N=4, RANGE=2) //N interpolants
 (input CLK,

26

 input [11:0] SAMPLE,
 input RST,
 input DAC_done,
 input MULT_done,
 input [16:0] COEF,
 output reg [11:0] MULT,
 output reg en_MULT,
 output [1+RANGE:0] COEFFICENT,
 output reg ADC_en,
 output reg [11:0] UPSAMPLE);

 integer j;

 // Neg Edge Flag
 reg CONVERSION_flag;

 reg [11:0] A [0:3]; //Sample Storage
 reg [RANGE-1:0] index; // interpolant index
 reg [1:0] Xc; // coefficient

 assign COEFFICENT ={index,Xc};

 // Next STATE Logic

 always@(posedge CLK)
 begin

 // RESET
 if(RST)
 begin
 UPSAMPLE<=0;
 A[0]<=0;
 A[1]<=0;
 A[2]<=0;
 A[3]<=0;
 index<=0;
 Xc<=0;
 CONVERSION_flag<=0;
 end // RESET

 else
 begin

 // Conversion NOT in progress
 if(~CONVERSION_flag)
 begin
 MULT<=A[Xc];

27

 // Only increment up to three
 if(Xc==2'b11)
 Xc<=Xc;
 else
 Xc<=Xc+1;

 en_MULT<=1'b1;

 if(MULT_done)
 begin
 en_MULT<=0;
 Xc<=0;
 CONVERSION_flag<=1;

 if(index==N-1)
 ADC_en<=1;
 else
 ADC_en<=0;

 // Roof and floor protection
 if(COEF[16])
 UPSAMPLE<=0;
 else if(|COEF[15:12])
 UPSAMPLE<=12'b111_111_111_111;
 else
 UPSAMPLE<=COEF[11:0];
 end // MULT_done
 end // Conversion Flag

 else
 begin

 if(DAC_done)
 begin

 if(ADC_en)
 begin
 A[3]<=SAMPLE;
 A[2]<=A[3];
 A[1]<=A[2];
 A[0]<=A[1];
 index<=0;
 Xc<=0;
 ADC_en<=0;
 end // ADC_en

 else
 begin

28

 index<=index+1;
 Xc<=0;
 end // ADC_en/else

 CONVERSION_flag<=0;
 end // DAC_done

 else
 CONVERSION_flag<=1;
 end // else

 end // else (~reset)

 end // always

 initial
 begin

 CONVERSION_flag=0;
 Xc=0;
 index=0;
 for(j=0;j<=3;j=j+1)
 begin
 A[j]=0;
 end
 end

endmodule

29

%%MATLAB Script

clc
clear all
close all
%%%%%%%%%%%%%%%%%%%%%
% This script is used to generate coefficients that
% are needed to interpolate. It is important that
% the SCALE variable below is set to the number N from the
% top level module from the design in Xilinx.
%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%
%%%%PARAMETER%%%%%%%%
SCALE=4;
%%%%%%%%%%%%%%%%%%%%%

% Indexes
n=0:3;
k=0:3; k=k';
m=0:4*SCALE-1; m=m';

% % Forward DCT
Forward=cos(pi.*k*(2*n+1)/8);
Forward(1,1:end)=ones(1,4)*0.5;

k=k';
% % INVERSE DCT
Inverse=cos(pi.*(2*m+SCALE)*k/(SCALE*8));
% % Matrix Multiplication of full system
DCTINTERP=Inverse*Forward/2;

% % Isolate needed coefficients
h1=DCTINTERP(2*SCALE+2:3*SCALE+1,:);
% % Reshape to fit one dim array
h1=reshape(h1',4*(SCALE),1);
h=dfilt.dffir(h1);
% % Quantize Coeff.
set(h,'arithmetic','fixed');
h.CoeffWordLength = 16;
coewrite(h,2,'mycoefile');

	

30

References	

Analog Devices, “2.35 V to 5.25 V, 1 MSPS, 12-/10-/8-Bit ADCs in 6-Lead SC70,” D02930-0-1/11(F)
datasheet, January 2011.

Diligent, “Diligent PmodAD1 Analog to Digital Module Converter Board Reference Manual,” 502-064
datasheet, December 6, 2011.

Diligent, “Diligent PmodDA1 Diligent to Analog Module Converter Board Reference Manual,” 502-113
datasheet, September 28, 2006.

National Semiconductor, “DAC121S101 12-Bit Micro Power Digital-to-Analog Converter with Rail-to-Rail
Output,” DS201149 datasheet, June 2005.

Oppenheim, Alan V., and Ronald W. Schafer. Discrete-time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 2010. Print

