SAN DIEGO STATE
UNIVERSITY

Fourier Interpolation on an FPGA

Department of Electrical and Computer Engineering
Signal Processing Research Laboratory

Danny Toma and Ashkan Ashrafi

Table of Contents

Tl A oY [V 4[] o H TP PP PP PP PPPPPTPPP 3
[01To] 2P 4
DESIZN CONSIAEIAtIONS oiiiiiiiiiii e 5
ConVersion aNd SAMPIING RAESuuuuuuuuuuuiuriuuuiuuuuuuuuutueeereereereeeeeaeeeee et 8
Y= (U o J PP UUPPPPRPPPRTPPRE 8
IMPIEMENTATION. ..o 10
LG Y= o AT g Y= Oo =Y i ol =T o PP PPPRPPNt 12
(61 [oTel QD 1Y/ o [=1 ST PP P PUPTUR O PPPPPPPP 16
BEC A T Te RV LT o) o AT o FO TP PPPRTTPPPI 18
AN o] 0 =] o Vo L 20
RETEIENCES ..ttt ettt e e e e sttt e e e e e e e s e n bbb ettt eeeeeaaannbbaeeeeeeeeaannrrebeeeeeeeaannrreees 30

Introduction

This paper describes the implementation of a real-time interpolator on an FPGA. The interpolator
utilizes a method based on the 1-D Discrete Cosine Transform (DCT). The software required for this
includes Xilinx ISE 14.4 and MATLAB. Knowledge of Verilog HDL and familiarity with MATLAB are
required. In addition, experience with the Discrete Fourier Transform is required to understand the
design. The physical requirements for this project are,

Virtex 5 ML506 with Xilinx JTAG programmer
Diligent Pmod1 ADI

Diligent Pmod1 DA2

Oscilloscope

Function Generator

0O O O O O

Theory

Interpolation is the construction of new data points, based on the given discrete points of a signal. The
method used to interpolate in this design is based on the Discrete Cosine Transform (DCT). A signal that
is band limited can be exactly interpolated by taking the Discrete Fourier Transform (DFT) and padding
zeroes to the end of the spectrum. If one mirror extends the data points prior to taking the DFT, it would
be equivalent to the Type-Il DCT. The equations for the DCT and the inverse DCT are

wk(2m+1)

X [k] = 23230 x[m] * cos (—

),k=QLmM—1)

x[m] = ZS¥=3 X [k] « blk] * cos (FED), m=0,1,.M~1 ()

where b[0] = Zland blk]=1fork=1,2..M — 1.

In some texts, these formulas rearrange the constants at the beginning of the equation to make the
transform orthogonal; however, for this design, it is not necessary. In order to interpolate, we must take
the forward DCT of a signal, and then take the inverse DCT of the zero-padded transform. We can
represent the forward DCT as a matrix with m in the columns and k in the rows,

- cos(0) cos(0) cos(0) 1
2 2 ' ' 2
L2 3n sn
cos (ZM) cos (ZM) cos (ZM
2 6T
cos(—
2M
(1\./1—1)7'[n(M—l).(Z(M—1)+1)
 cos (—ZM) : : . cos(o)|

By multiplying this matrix by the extended inverse DCT matrix, the outcome is a matrix that may be
multiplied by the sampled sequence to achieve an interpolated sequence (as will be seen in (4)). First,
however, we must modify the inverse DCT to fit our application. We can zero-pad the DCT by only
utilizing a summation of M points and multiplying the denominator of the cosine by N. Also, we apply a
shift to the cosines in order to have x[n] = xmN]. The resultant IDCT equation is

=01..NxM—-1 (3)

x[n] = 5 NG X [K] * cos (T 20),

2«N*xM

where N is an integer and the scaling factor.

The matrix for the inverse transform is

i 0 2Nm (M - 1Nr 1
cos(0) cos(ZNM) cos(ZNM) . cos(SNM
0 2+ N)r (2+ N)2r
cos(0) cos(SNM) SNM
(4+N)r

1 A
1 cos(SNM)
M .

(M — 1)(2(MN — 1) + N)
cos()

0
_cos() ONM]

If Ais the DCT matrix and B is the inverse DCT matrix, then x[m], a row vector of M samples, can be
interpolated by doing the multiplication in Equation 4 and x[n] becomes an M*Nx1 row vector.

x[n] = - (BA)x[m] (@)

Design Considerations

In order to interpolate in real time, the processing is done in frames. As explained in the previous Theory
section, the size of the frame is M. For this implementation, M is fixed to four. Another aspect of the
design that must be considered is the upscaling factor, N. In this design, the number N is user defined
and parametric. It should be noted that N must be an integer. For the demonstration, we assign the
upscaling factor, N, to four. If a different upscaling factor is desired, simply assign it to N in the top
module and carry out the rest of the procedure with the corresponding factor in mind. An example of
the processing frame is illustrated in the Figure 1.

Four Point Framed Interpolation

7t . -
o]

o -
. o
o —]

L @

Figure 1:Four point processing frame using DCT/IDCT

5

In the design from Figure 1, four DCT coefficients are needed for every newly constructed data point.

The design implements N*3 impulse responses, each of which are specifically dedicated to a point on

the new, upsampled sequence. These sub-responses can be represented by a row of four points from

the resulting matrix of Equation 4. The responses are as follows,

ho[0] + hyl[1]z7? + hy[2]z72
h4[0] + hyf1)z7?t + hy[2]z72
H(z) =

hany-1[0] + hay_1[1]z7' + hsy_4[2]z72

+ h3n_g [3]2_3

The 4 point processing frame requires 4 coefficients for every row; thus, a total of N*3*4 coefficients are

needed. We can reduce the number of coefficients by refreshing the frame every sample and only

interpolating on the final data points. Specifically, interpolants are only inserted between x[2] and x[3]
(the original third and fourth samples). To do this, we can utilize rows 2*N to 3*N-1. The rows for the

processing frame are as follows,

h,n[0] + hzzv[l]z_1 + han [2]2_2

hon+1[0] + honia[1]z7' + honyq[2]272
H(z) =

han-1[0] + hsy_q[1]z7' 4+ hsy_4[2]2z72

+ hon(3]27°
+ hzzv+1[3]z_3

+ h31v—1[3]2_3

This means that only N*4 coefficients are needed rather than N*4*3. Basically, the design is a moving

version of the illustration in Figure 2.

DCT Interpolaton Moving Frame

7r ¢
o}

Figure 2:Processing frame between x[2] and x[3]

35

To verify, we have applied a test signal and interpolated based on the moving four point frame from
Figure 2. Figure 3 shows an example of the original signal, x[m] and the interpolated version, x[n].

1.6 T T T T T
1F _
E o5} _
=
0 o) Qo Po o oo} Q0
o (eR; ORY] (5(.) U&) ONy] OBV o
_05 1 1 1 1 1
0 5 10 15 20 25 30
15 T T T T T

Figure 3:Test signal (above) and interpolated signal using moving frame (below)

Another parameter that must be set is SIZE. This is equal to the number of bits needed to represent the
integer N. For the demonstration, N is four; thus, we only need SIZE to be equal to 2 bits. Again, this is
set in the top module.

Conversion and Sampling Rates

Two external devices interface with the ML506 board. The PMOD AD1 and PMOD DA?2 act as the input
and output of the overall system. In order to digitize a signal, the PMODADL1 is used. It contains two
AD7476A chips from Analog Devices. The DAC1215101 chip from National Semiconductor is used on the
PMODDA?2 to output the signal and the new data points. Both devices use Serial Peripheral Interface
(SPI) and the module DAC_OUT is used to interface with the external boards.

The clocking speed on board of the ML506 is 100MHz. Both PMOD boards can only be clocked at a
maximum frequency of 20 MHz. To be well within spec, we can bring the clock speed down to the 10
MHz. This will be done using the clock manager in a following section. A single conversion for both the
ADC and the DAC takes at least 28 external clock cycles in this design. The DAC_OUT module gives the
user the ability to change the conversion frequency by setting the parameter WAIT_TIME in the top
module. This parameter must be calculated by the formula below. It should be noted that the sampling
frequency of the output is the Desired Frequency from the equation below. For the ADC frequency,
simply divide the Desired Frequency by the scaling factor, N. For the demonstration, the desired
frequency is 192 KHz so the parameter WAIT_TIME is set to 24.

10x10°

Desired Frequency = ———— Hz (5)
28+WAIT_TIME

Setup

At this point, we are ready to implement the design. Power up the ML506 and find a Xilinx JTAG
programmer to connect to the desktop and the FPGA. The PMODs will be placed on the J6 header pins.
The AD1 will have pin 1 going to pin 38 on the ML506 and the DA2 will have pin 1 going to pin 52. This is
illustrated in Figure 4.

Figure 4:J6 headers on ML506 and PMOD connectors

8

Connect the ground to the designated pins on both boards. The ML506 has a ground pin in the last row,
of the center column on the J6 header. Also, there are pins that output 3.3V. Jump these to the circuit to
make the correct connections to the ADC and DAC. Next, connect the function generator and scope
probes to AO (first pin of the ADC), DO (first pin of DAC), and D1 (third pin of the DAC) respectably. The
setup is illustrated in Figure 5 and Figure 6.

Figure 5:Scope probes (black) connected to DAC
and function generator (red) connected to ADC

Figure 6:Board setup and ML506 orientation

Implementation

Now that we have the physical setup, we open up Xilinx ISE to implement the design. Create a
designated folder for the modules in any appropriate directory. In Xilinx, select File, New Project. The
window in Figure 7 will pop up.

- — (o)

& New Project Wizard

Create New Project

Specify project location and type.

I O

Enter a name, locations, and comment for the project

Name: DCT_Interpolation|

T

Location: F:\Spring2014\RealTimeDSPLab\DCT_Interpolation\DCT _Interpolation

@
I

Working Directory: | F:\Spring2014\RealTimeDSPLab\DCT_Interpolation\DCT_Interpolation

Description:

Select the type of top-level source for the project

Top-evel source type:

HDL El

Figure 7:New Project Wizard

Name the project DCT_Interpolation. Match the project settings with the ones illustrated in Figure 8.

5 - = N
Ed -
@ New Project Wizard
i| Project Settings

Specify device and project properties.
Select the device and design flow for the project

Property Name Value 2l

) Evaluation Development Board None Specified E

| Product Cateqory All E
Famnily Virtex3 [+]

l Device XCSYSXSOT [+
Package FF1136 [+]
Speed -3 E

| Top-Level Source Type HDL

| Synthesis Tool XST (VHDLVerilog) [~

| Simulator ISim (YHDL/Verilog) E

, Preferred Lanquaqe ‘erilog E

: Property Specification in Project File | Store all values E

i Manual Compile Order (&
WHDL Source Analysis Standard WHDL-93 El i

Figure 8:Project settings

10

Add a Verilog Module by selecting Project, New Source. A window will appear. Select Verilog Module
and name it TopLevel as shown in Figure 9.

4 New Source Wizard

Select Source Type

Select source type, fie name and its location.

£{ 1P (CORE Generator & Architecture Wizard)
[0) Schematic

[£] User Document

VHDL Test Bench
Z% Embedded Processor

File name:
TopLevel

Location:

2b\DCT] CT_Interpolation

7] Add to project

Figure 9:New verilog source for top module

Copy the DCT INTERPOLATION code from the Appendix and paste it into the module. After saving the
code, it is evident that there seems to be missing modules from the top level. This is where the
coefficient look up table and clock divider will be. Prior to inserting these, however, we can map the 10’s
to our design by adding a User Constraints File. Select Project, New Source, and select Implement
Constraints File. Name the file “board”. Copy and paste the following code for the .ucf file.

INTERNAL CLOCK 100 MHz
NET "CLK_100" LOC = "AH15";

PMOD AD1

NET "CS" LOC = "AE32"; // Pin 38 on ML

NET "Din" LOC = "AG32"; // Pin 40 on ML

NET "ADC_CLK" LOC = "AK34"; // Pin 44 on ML

Pmod DA2 DAC Pins on J6 Header

NET "SYNC" LOC = "AL34"; // Pin 52 on ML
NET "DO" LOC = "AL33"; // Pin 54 on ML

NET "DO_2" LOC="AM33"; // Pin 56 on ML
NET "DAC_CLK" LOC = "AJ34"; // Pin 58 on ML

RESET
NET "RST" LOC = "V8"; // GPIO South Buttton on Board

PMOD AD1
NET "CS" FAST; // Pin 38 on ML
NET "ADC_CLK" FAST; // Pin 40 on ML

Pmod DA2 DAC Pins on J6 Header
NET "SYNC" FAST; // Pin 52 on ML
NET "DO" FAST; // Pin 54 on ML

NET "DO_2" FAST; // Pin 56 on ML
NET "DAC_CLK" FAST; // Pin 58 on ML

11

When saved, the project should look like Figure 10.

dHP S| %

sign

s rr Ty

View: © {8} Implementation ©) [Simulation

X|@® | »

PrPE

08X

Hierarchy

8] DCT_Interpolation
B €3 xcSvexS0t-3ff1136

& [V)d% TopModule_1 (TopLevel.v)

[¥] UUL - MAC (TopLevel)

- DCT (TopLevel)
- LUT (LUTxco)
- DAC_OUT (TopLevel.v)
- CLK_DIV (CLK_DIVxaw)

¥ NoProcesses Running

Processes: board.ucf
@@ User Constraints

Generating Coefficients

Figure 10: Project after saving .ucf file

The implementation is similar to a four tap FIR filter; however, we need to have coefficients for each

index rather than one set impulse response. These coefficients are based on Equation 5 and can be

placed into a ROM. To generate the coefficients, we must first use MATLAB. Create a new script in
MATLAB and insert the code provided in the Appendix. Set the variable named SCALE to the integer N
that was chosen for this design. Run the script. A new .coe file named mycoefile will be saved in the
MATLAB directory as illustrated in Figure 11.

] Select COE File

GO~

» Libraries » Documents » MATLAB »

2

Organize v New folder

¢ Favorites
B Desktop
18 Downloads

MATLAB

Name
%] Recent Places
codegen
4 Libraries
[Documents
& Music
&) Pictures

B videos

1% Computer
& o5
(a DATAPARTL (D)
(s DATAPART2 (E:)
(s DATAPART3 (F))

Figure 11:Path to .coe file from MATLAB

4] mycoefile.coe

Documents library

Date modified

6/2014 4:16 PM
014 7:00 PM

Type

File folder

COE File

=y 0 @

Arrange by: Folder v

Due to MATLAB generating coe files that are not compatible with any recent versions of Xilinx, we need

to manually alter the file. When selected, the coe file will open in a text editor. Remove the text “Radix =

... CoefData =" and replace it with the following text as shown in Figure 12 and Figure 13.

memory_initialization_radix=2;
memory_initialization_vector=

12

Verify that the beginning of the file looks identical to the Figure 13. Save the file and exit MATLAB. Do
not rerun the script. That would reformat the file back to the incorrect form.

File Edit Format ‘fiew Help

33 XILINX CORE Generator(tm)Distributed Ar'lthmet'lc FIR filter cnefﬁc‘lent (.COE) F'l'le, Generated by MATLAB(R) 8.0 and the DSP System Toolhox 8.3
;i Generated on: 22-Jul-2014 19:00:02; 0000011011101011,1110011000101101 ,0111000101000000, 001000011

Figure 12: Incorrect format for .coe file

"1] mycoefile.coe - Notepad

File Edit Format View Help

;3 XILINX CORE Generator (tm)Distributed Arithmetic FIR filter coefficient (.COE) File; Generated by MATLAB(
;3 Generated on: 22-Jul-2014 19:00:02;

memory initialization_radix=2;
Alnhs s e s 0000010111011010,1110100110111000,0111100011101011,0001011110000011,00000111
0101101100100001 0011100001111110, 0000010011101111 1110111011001000 0010111010010101 0101110110110100

Figure 13:Correct format for .coe file

Next, we can insert this ROM by using the Xilinx IP tool. Select Project and New Source. On the window
that pops up, select IP (CORE Generator and Architecture Wizard) and name the file LUT. The name of
the module is significant as it is called in the top level of the project. In Memories and Storage, RAMs &
ROMs, select Block Memory Generator (Figure 14).

@ New Source Wizard w e ’

SelectIP

Create Coregen or Architecture Wizard IP Core.

Name “ Version AXW4 AXW4-Stream AXW-Lite Status License Vendor Library e
BaselP
Basic Elements
7 Communication & Networking
7 Debug & Verification
7 Digital Signal Processing
|7 Embedded Processing
7 FPGA Features and Design
|7 Math Functions
7 Memories & Storage Elements =
@[FIFOs
(|7 Memory Interface Generators
&7 RAMs & ROMs
“# Block Memory Generator 73 Production xilinx.com ip
% Distributed Memory Generator 7.2 Production xilink.com ip
@ |77 Standard Bus Interfaces
|7 Video & Image Processing L3

S—

[T AllTP versions [T only 1P compatible with chosen part

08606060660

Figure 14:1P Core Wizard directory

13

A wizard will appear (Figure 15). Go to the second page of the wizard and select Single Port ROM as
illustrated in Figure 16.

%] Block Memory Generator [=)

Documents View
P Symbol 8 x

lgic:?* Block Memory Generator

xilinx.com:ip:blk_mem_gen:7.3

Component Name [LUT]
Interface Type

© Native

Mode [Stand Alone -

Native Interface Block Memory Generator (BMG) are the original standard BMG functions delviered by the previous versions of the LogiCORE Block
Memory Generator (prior to v6.x). They are optimized for data storage, width conversion, and clock domain de-coupling functions...

Native Interface BMG cores can be customized to utilize Single Port RAM (SP), Simple Dual Port RAM (SDP), True Dual Port RAM (TDP) and Single
Port ROM (SP ROM) configurations. In addition, Native Interface BMG core also support features such as SftECC/ECC, Pipeline Stages and file
based Memory

1P symbol | || Power Estimation | <Back | Page1of6 [Next> | [Generate | [cancel | [Help

Figure 15:Block Memory Generator initial window

%{ Block Memory Generator [=)

Documents View
1P Symbol B x

1gi¢?* Block Memory Generator

xilinx.com:ip:blk_mem_gen:7.3

Memory Type [Single Port RO ~
Single Port RAM
Simple Dual Port RAM

Clocking Opti

11 Common True Dual Port RAM

Dual Port ROM
Addressing Opuo

[] Enable 32-bit Address

ECC Options
ADDRATE DOUTA1: —————
Rl Al ECCType No ECC
Write Enable
cua ' [Use Byte Write Enable

Byte Size (9~ | bits

Algorithm

Defines the algorithm used to concatenate the block RAM primitives. See the datasheet for more information.

© Minimum Area

Low Power

© Fixed Primitives

Primitive (Write Port A) B2]
Actual Primitive(s) Used : 16k, 82

1 symbol [0 Power Estimation <Back | Page20f6 | Next> | [Generate | [cancel |[Help

Figure 16:Single Port ROM

14

On the next page, input 16 for the Read Width. The Read Depth is equal to the parameter N*4.

4 Block Memory Generator

Documents View
P Symbol 8 X

lgic:?* Block Memory Generator i comsiablk e, goni73

Port A Options
Memory Size
Read Width 16 Range: 1..4608
Read Depth 16| Range: 2..9011200

Operating Mode Enable
© Always Enabled

@ Write First ~
(© Use ENA Pin

Read First

No Change

| 1P Symbol | Power Estimation <Back | Page3ofs [New> | [Generate | [Cancel |[relp

Figure 17:Size of Memory

Finally, load the .coe file on page 4 by selecting browse and finding the correct file from the MATLAB
directory. Itis placed in DOCUMENTS/MATLAB folder.

[4] Block Memory Generator b B . L L L L 2 [e

Documents View
1P Symbol 8 x

Lgici?* Block Memory Generator iin.comip:blk_mem_gen:7.3

Optional Output Registers
Port A
[C] Register Port A Output of Memory Primitives
[Register Port A Output of Memory Core
] Register Port A Input of SoftECC logic

] Use REGCEA Pin (separate enable pin for Port A output registers)

Pipeline Stages within Mux |0 ~ | Mux Size: 1x1
DOUTA[15:0]

ADDRAE
N Memory Initialization
[9]{Load Init File]

Coe File no_coe_file_loaded Browse Show

[] Fill Remaining Memory Locations

Remaining Memory Locations (Hex) [0

% 1 Symbol [Pawer Estmaton <Back | Page4of6 | Net> ||[Generate | [Cancel || Help

Figure 18: Loading of .coe file

15

To verify that the coefficients are properly loaded into the ROM, select Show to view the contents. After
verification, select Generate.

%] Block Memory Generator = =

IP Symbol 8 X

lgi¢\?* Block Memory Generator

xilinx.com:ip:blk_mem_gen:7.3
Optional Output Registers
Port A

[7] Register Port A Output of Memory Primitives

Regi™ - N
ClReg %{ COE File Contents (L9 [
Regl
Uea] | Radix: 2 ers)
COE Vector: memory_initialization_vector
Pipeline -
ADDRA[3.0] DOUTA[15:0] Index Value =
ENA 0 0000010111011010
Memorylll [1 1110100110111000
@ Load | |2 0111100011101011
— S —» ~0:00RE 3 0001011110000011 =
cua CoeFile || |4 0000011110000010 Show
5 1110010011011111
6 0101101100100001
. 7 0011100001111110
CIFillRe)| |g 0000010011101111
Remainid| |® 1110111011001000 el 1

G 1 Symbol [Fower Extmation <Back |Page4of6 [Next> | [Generate | [Cancel | [Help
q

Figure 19: Coefficients correclty inserted into memory

Clock Divider

The final component that must be added to the design is the DCM clocking manager. Create a new IP
Core source as done in the previous section, but this time, name it CLK_DIV. Again the name should be
exactly the same in order to instantiate it from the top module. Select next and find the “Double clock
frequency (DCM)” under FPGA Features and Designs, Clocking, Virtex 5, and Choose wizard by basic
function (Figure 20).

- . p g AL ANL EY 4 R

@ New Source Wizard 0 o _—
b - N— —— ¥

SelectIP

Create Coregen or Architecture Wizard IP Core,

i
] View by Function | View by Name
j Name 4 Wersion A4 AXI4-Stream AX4-lite Status License Vendor Library *
I @ |77 Digital Signal Processing
| @77 Embedded Processing
|7 FPGA Features and Design
|77 Clacking
4 § Clocking Wizard 36 xilinx.com ip
A |7 spartan-3 B
il (|7 Spartan-3€, Spartan-34
i 7 Virtex-d
f B[Virtex-5
i £ [7 Choose wizard by basic function
fl % Double clock frequency (DCM) 51 Production silinx.com ip
X\ Dynamnically switch between input clock sources (PLL) 131 Production silinccom ip
o X Filter clock jitter (PLL) 131 Production silinccom i
B X Filter jitter on DCM input clack (PLL to DCM) 131 Production silinccom i
X Filter jitter on single DCM output clock (DCM to PLL) 131 Production silincom ip &
« i, »

Seach P Catses

[T] all 1P versions [] only 1P compatible with chosen part:

Figure 20: Clock Manager in IP Core Wizard directory

16

Next, a window will appear asking for the HDL that is in use. Select Verilog as shown below.

-
A* Xilinx Architecture Wizard - Setup

S

XAW File:
I)CT_Inlerpolallon RevI\DCT_INTERPOLATION\ipcore_dir\.\CLK_DIV xaw

© Verilog

Synthesis Tool
[xsT
Part

[xcHvsx50t-31136

| 0K

Figure 21: HDL Selecton

On the pop-up window that appears, select the CLKDV component, input 100 to the Input Clock
Frequency, and select 10 for the Divide By Value (Figure 22). Verify that the wizard looks identical to
Figure 22. Generate the clock divider by clicking next for the remaining windows. When the core is done
loading, all modules instantiated in the top level should be present.

P p—

¢ Xilinx Clocking Wizard - General Setup [
V]
Input Clock Frequency Phase Shift
© MHz © ns Type: | NONE [+]
Vake:
CLKIN Source Feedback Source
@ Bdemal © Intemal © Bdemal @ Intemal (©) None
@ Single @ Single
© Differential Differential
Divide By Value Feedback Value
10 H @ 1X
Use Duty Cycle Comection
[Moeifo |[Advanced | | <Back [Net> | [Cancel
——— — |

Figure 22: Clocking options for DCM

17

Test and Verification

With all parameters set and all modules ready, we can select Generate Programming File (Figure 23).
When the Xilinx is done loading, program the FPGA using IMPACT and assign the corresponding
configuration file to the device.

L

T2 No Processes Running

Processes: TopModule_1
= Design Summary/Reports
@ Design Utilities
[# User Constraints
-8 Synthesize - XST
- 82 Implement Design

. Generate Programming File

@ 1% Configure Target Device
€* Analyze Design Using ChipScope

(992 v

Figure 23: Generate programming file for target device

By connecting the probes to pins 38 and 52 on the J6 header, you are able to view the enable for the
ADC and DAC. Notice that the ADC and DAC are both active low. As illustrated on the scope, SYNC, the
yellow signal, is enabled N times more than CS, the blue signal. Also, the frequency of CS is
approximately 48 KHz, four times less than the desired frequency of 192 KHz. Prior to inserting a signal
into the system, it should be mentioned that the ADC and DAC only operate with positive voltages; thus,
if one inserts a signal straight from the function generator, an offset must be used to place the signal in
the proper range (0-3.3V). Input a signal to the ADC.

==

. 23-Jul’14 10149 Trigy

2v

Hz 1G Sais

Figure 24: Enable for DAC (yellow) and ADC (blue)

18

When observing signals at the input and the output, the signal should be uninterrupted. Again, the
intention is not to alter the content of the signal; rather, the goal is simply to change the resolution of
the output. Raise the frequency to near half of the sampling frequency. If the scope is used to runstop
and zoom in on the signal, as illustrated in Figure 26, cursors may be used to view the sampling period.
Notice the stair-like nature of the signal in Figure 26. The cursors show that the width of the steps in
time is approximately 5.2us. This translates to an output rate of approximately 192 KHz and verifies that
that the sampled signal is being interpolated.

MSaous WCH1 EDGE 7 '1 B‘ |
» BOBOZK Hz
CH2 _lU CH3 ==5006mU CH4 ~ 5U

e ——
[Gl_"_ Ian GDS_EE°4 Digtal Storage Oscilloscope

200MHz 1G Sa/s

Figure 25:Signal at the input and output

t Horizontal

P D 2880
e SkH

.J\EA[—)*&E""";;J_L‘JJ‘ 17.006%Hz
13 ==508mU) CH4 ~ 5U

Figure 26: Zoomed in scope shot

19

Appendix

//DCT INTERPOLATION in Verilog HDL

‘timescale 1ns / 1ps
I T T
// Create Date: 13:15:07 06/28/2014
// Design Name: DCT INTERPOLATION
// Module Name: TopModule_1
// Target Devices: Virtex 5, ML506
// Tool versions: Xilinx ISE 14.4
// Description: This design is a real-time interpolator that is based on the DCT
// Parameters: N is the upsampling integer.
// SIZE must be set to the number of bits needed to suppord the integer N
// WAIT_TIME allows the user to change the sampling frequency
I T T
module TopModule_1#(parameter N=4, WAIT_TIME=78, SIZE=2)

(Din, CLK_100, RST,CS, ADC_CLK, SYNC, DO, DO_2, DAC_CLK);

input Din;

input CLK_100;
input RST;
output CS;
output ADC_CLK;
output SYNC;
output DO;
output DO_2;
output DAC_CLK;

wire [11:0] value_out;
wire [11:0] value_in;

wire [SIZE+1:0] coef_index;
wire [11:0] sample;

wire [15:0] dct_coeff;

wire [16:0] mat;
wire mult_en;
wire mult_done;

wire CLK;
// wire CLK; // TEST
// assign CLK=CLK_100; // TEST

assign ADC_CLK=CLK;
assign DAC_CLK=CLK;

20

MAC #(4) UU1 (
.CLK(CLK), // in from ML506
.en(mult_en),// in from DCT
A(sample),// in 12 bits from DCT
.B(dct_coeff), // in 16 bits from LUT
.MULT_COMPLETE(mult_done),// out to DCT
.FINAL(mat)// out 16 bits to DCT

);

DCT #(.N(N),.RANGE(SIZE)) UU2 (
.CLK(CLK), // in from ML506
.SAMPLE(value_in), // in 12 bits from DAC_OUT
.RST(RST), //in
.DAC_done(dac_done),// in from DAT_OUT
.MULT_done(mult_done), // in from MAC
.COEF(mat), // in 16 bits from MAC
.MULT(sample), // out 12 bits to MAC
.en_MULT(mult_en), // out to MAC
.COEFFICENT(coef_index), // out to LUT
.ADC_en(adc_en), // out to DAC_OUT
.UPSAMPLE(value_out)// out 12 bitsto DAC_OUT

);
(* BOX_TYPE = "user_black_box" *)

LUT UU3 (
.clka(CLK), // input clka
.addra(coef_index), // input
.douta(dct_coeff) // output [15 : 0] douta

);

DAC_OUT #(WAIT_TIME)

uu4 (
.CLK(CLK),// 100 MHz Clock
.RST(RST),
.VALUE_OUT(value_out), // output 12 bit from DCT to DO
.DI(Din), // input
.ADC_EN(adc_en), // input
.VALUE_IN(value_in), // input 12 bit to DCT
.CS(CS), // output
.DCLK1(CLK), // output
.SYNC(SYNC), // output
.DO(DO), // output
.DO_2(DO_2), // output
.DAC_DONE(dac_done) // output to DCT

21

);

CLK_DIV UUS5 (
.CLKIN_IN(CLK_100),
.CLKDV_OUT(CLK),
.CLKIN_IBUFG_OUT(), // Unconnected
.CLKO_OUT() // Unconnected

);

endmodule

‘timescale 1ns / 1ps
o
// Create Date: 20:27:34 05/01/2014
// Description: This is a MAC that only Adds four levels at a time. "en" initiates
// the process. MULT_COMPLETE Goes high when MAC is done and the output
// retains the correct value until reset.
o
module MAC #(parameter SIZE=4)

(input CLK, en,

input signed [11:0] A,

input signed [15:0] B,

output reg MULT_COMPLETE,

output signed [16:0] FINAL

);

reg [4:0] COUNT;
wire signed [28:0] Temp1;
reg signed [30:0] Temp2;

assign Temp1=S$signed({1'b0,A})*Ssigned(B);// Multiply
assign FINAL=Temp2[30:14];

always@(posedge CLK))
begin

if(en)
begin

if(COUNT < (SIZE))

begin
COUNT<=COUNT+1;
Temp2<=Templ+Temp2; // Accumulate

22

end
else
// raise COMPLETE flag and output the high 16 bits
MULT_COMPLETE<=1;

end // end if(en)

else

begin
// RESET
MULT_COMPLETE<=0;
COUNT<=0;
Temp2<=0;

end

end // always

initial
begin
// Initial Conditions
COUNT=0;
Temp2=0;
MULT_COMPLETE=0;
end

endmodule

i
// Create Date: 10:23:17 04/28/2014

// Module Name: DAC_OUT
// Description: The DAC_OUT module is the front end of the design. It interfaces
// directly with the PMOD boards.
o
module DAC_OUT#(parameter ADDED_TIME=12)
(input CLK, RST,
input [11:0] VALUE_OUT, //TO DAC
input DI,
input ADC_EN,
output reg [11:0] VALUE_IN, // TO FPGA for Processing
output reg CS,
output DCLK1,
output reg SYNC, DO, DO_2, DAC_DONE);

// Used to input and output when enabled
reg [4:0] COUNT;

23

// temp register for original samples
reg [11:0] Temp;

integer TIMER=0;
assign DCLK1=CLK;

always@(posedge CLK))
begin
if(“RST)
begin
COUNT<=COUNT+1;

if(COUNT<11)

begin
DO<=0;
DO_2<=0;
DAC_DONE<=0;

end

// Begin data conversion by setting ADC and DAC to '0'
else if(COUNT >=11 && COUNT <=14)

begin
SYNC<=1'b0;
if(ADC_EN)
CS<=1'b0;
DO<=0;
DO_2<=0;
end

// 12 bit words are sent and recieved
else if(COUNT<=26)
begin
DO<=VALUE_OUT[26-COUNT];
DO_2<=Temp[26-COUNT];

if(ADC_EN)
begin
VALUE_IN[0]<=DI;
//Shift Data Into ADC
VALUE_IN[11:1]<=VALUE_IN[10:0];
end
end

// Turn off enablers
else if(COUNT==27)
begin
Temp<=VALUE_IN;

24

CS<=1'b1;
SYNC<=1'b1;

if(TIMER==ADDED_TIME)

begin
COUNT<=0;
TIMER<=0;
DAC_DONE<=1;
end
else
begin
COUNT<=COUNT;
TIMER<=TIMER+1;
DAC_DONE<=0;
end
end
end //RST
else
COUNT<=0;
end
initial
begin
Cs=1;
DAC_DONE=0;
COUNT=0;
SYNC=1;
end
endmodule

‘timescale 1ns / 1ps
I T T
// Create Date: 01:01:16 05/15/2014
// Module Name: DCT
// Description: This module acts as the controller for the design.
I T T
module DCT #(parameter N=4, RANGE=2) //N interpolants

(input CLK,

25

input [11:0] SAMPLE,

input RST,

input DAC_done,

input MULT_done,

input [16:0] COEF,

output reg [11:0] MULT,

output reg en_MULT,

output [1+RANGE:0] COEFFICENT,
output reg ADC_en,

output reg [11:0] UPSAMPLE);

integer j;

// Neg Edge Flag
reg CONVERSION_flag;

reg [11:0] A [0:3]; //Sample Storage
reg [RANGE-1:0] index; // interpolant index
reg [1:0] Xc; // coefficient

assign COEFFICENT ={index,Xc};
// Next STATE Logic

always@(posedge CLK))
begin

// RESET

if(RST)

begin
UPSAMPLE<=0;
A[0]<=0;
A[1]<=0;
A[2]<=0;
A[3]<=0;
index<=0;
Xc<=0;
CONVERSION_flag<=0;

end // RESET

else
begin

// Conversion NOT in progress
if(“*CONVERSION_flag)
begin

MULT<=A[Xc];

26

// Only increment up to three

if(Xc==2'b11)
Xc<=Xc;
else
Xc<=Xc+1;

en_MULT<=1'b1;

if MULT_done)

begin
en_MULT<=0;
Xc<=0;
CONVERSION_flag<=1;

if(index==N-1)
ADC_en<=1;
else
ADC_en<=0;

// Roof and floor protection

if(COEF[16])
UPSAMPLE<=0;

else if(| COEF[15:12])
UPSAMPLE<=12'b111_111_111_111;

else
UPSAMPLE<=COEF[11:0];

end // MULT _done
end // Conversion Flag

else
begin

if(DAC_done)
begin

if(ADC_en)

begin
A[3]<=SAMPLE;
A[2]<=A[3];
A[1]<=A[2];
A[0]<=A[1];
index<=0;
Xc<=0;
ADC_en<=0;

end // ADC_en

else
begin

27

index<=index+1;
Xc<=0;
end // ADC_en/else

CONVERSION_flag<=0;
end // DAC_done

else
CONVERSION_flag<=1;
end // else

end // else (~reset)

end // always

initial
begin
CONVERSION_flag=0;
Xc=0;
index=0;
for(j=0;j<=3;j=j+1)
begin
A[j]=0;
end
end

endmodule

28

$%MATLAB Script

clc

clear all

close all

% This script is used to generate coefficients that

% are needed to interpolate. It is important that

the SCALE variable below is set to the number N from the

900000000000000000000
OO0OOOOOOOOOOOOOOOOO©O™©O™©
900000000000000000000
OO0OOOOOOOOOOOOOOOOOOD©O™©
$%$%SPARAMETERS$%%%%%%
SCALE=4;
900000000000000000000
OO0OOOOOOOOOOOOOOOOOOD©O™©
% Indexes

n=0:3;

k=0:3; k=k';
m=0:4*SCALE-1; m=m';

% % Forward DCT
Forward=cos (pi.*k* (2*n+1)/8) ;
Forward(l,1l:end)=ones(1,4)*0.5;

k=k';
% % INVERSE DCT
Inverse=cos (pi.* (2*m+SCALE) *k/ (SCALE*8)) ;

% % Matrix Multiplication of full system
DCTINTERP=Inverse*Forward/2;

o©

% Isolate needed coefficients
1=DCTINTERP (2*SCALE+2:3*SCALE+1, :) ;
% Reshape to fit one dim array
l=reshape (hl',4* (SCALE),1);
=dfilt.dffir (hl);

% Quantize Coeff.

set (h, "arithmetic', 'fixed'");
h.CoeffWordLength = 16;

coewrite (h, 2, 'mycoefile'");

o0 5B oo I

29

References

Analog Devices, “2.35V to 5.25V, 1 MSPS, 12-/10-/8-Bit ADCs in 6-Lead SC70,” D02930-0-1/11(F)
datasheet, January 2011.

Diligent, “Diligent PmodAD1 Analog to Digital Module Converter Board Reference Manual,” 502-064
datasheet, December 6, 2011.

Diligent, “Diligent PmodDA1 Diligent to Analog Module Converter Board Reference Manual,” 502-113
datasheet, September 28, 2006.

National Semiconductor, “DAC121S101 12-Bit Micro Power Digital-to-Analog Converter with Rail-to-Rail
Output,” DS201149 datasheet, June 2005.

Oppenheim, Alan V., and Ronald W. Schafer. Discrete-time Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 2010. Print

30

