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Introduction	

This paper describes the implementation of a real-time interpolator on an FPGA. The interpolator 
utilizes a method based on the 1-D Discrete Cosine Transform (DCT). The software required for this 
includes Xilinx ISE 14.4 and MATLAB. Knowledge of Verilog HDL and familiarity with MATLAB are 
required. In addition, experience with the Discrete Fourier Transform is required to understand the 
design. The physical requirements for this project are, 

o Virtex 5 ML506 with Xilinx JTAG programmer 
o Diligent Pmod1 AD1 
o Diligent Pmod1 DA2 
o Oscilloscope 
o Function Generator 
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Theory	

Interpolation is the construction of new data points, based on the given discrete points of a signal. The 
method used to interpolate in this design is based on the Discrete Cosine Transform (DCT). A signal that 
is band limited can be exactly interpolated by taking the Discrete Fourier Transform (DFT) and padding 
zeroes to the end of the spectrum. If one mirror extends the data points prior to taking the DFT, it would 
be equivalent to the Type-II DCT. The equations for the DCT and the inverse DCT are  

𝑋"[𝑘] = 2∑ 𝑥[𝑚] ∗ 𝑐𝑜𝑠 /01(3456)
38
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where 𝑏[0] = 6
3	

 and 𝑏[𝑘] = 1 for 𝑘 = 1, 2…𝑀 − 1. 

In some texts, these formulas rearrange the constants at the beginning of the equation to make the 
transform orthogonal; however, for this design, it is not necessary. In order to interpolate, we must take 
the forward DCT of a signal, and then take the inverse DCT of the zero-padded transform. We can 
represent the forward DCT as a matrix with m in the columns and k in the rows, 
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By multiplying this matrix by the extended inverse DCT matrix, the outcome is a matrix that may be 
multiplied by the sampled sequence to achieve an interpolated sequence (as will be seen in (4)). First, 
however, we must modify the inverse DCT to fit our application. We can zero-pad the DCT by only 
utilizing a summation of M points and multiplying the denominator of the cosine by N. Also, we apply a 
shift to the cosines in order to have x[n] = x[mN]. The resultant IDCT equation is   

𝑥[𝑛] = 6
8
∑ 𝑋"[𝑘] ∗ 𝑐𝑜𝑠 /

01(3;5V)
3∗V∗8

98:6
1<= , 𝑛 = 0, 1, … 	𝑁 ∗ 𝑀 − 1	 (3) 

where N is an integer and the scaling factor.  
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The matrix for the inverse transform is 
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If A is the DCT matrix and B is the inverse DCT matrix, then x[m], a row vector of M samples, can be 
interpolated by doing the multiplication in Equation 4 and x[n] becomes an M*Nx1 row vector. 

𝑥[𝑛] = 3
8
(𝐁𝐀)𝑥[𝑚]	     (4) 

Design	Considerations	

In order to interpolate in real time, the processing is done in frames. As explained in the previous Theory 
section, the size of the frame is M. For this implementation, M is fixed to four. Another aspect of the 
design that must be considered is the upscaling factor, N. In this design, the number N is user defined 
and parametric. It should be noted that N must be an integer. For the demonstration, we assign the 
upscaling factor, N, to four. If a different upscaling factor is desired, simply assign it to N in the top 
module and carry out the rest of the procedure with the corresponding factor in mind. An example of 
the processing frame is illustrated in the Figure 1. 

 

Figure 1:Four point processing frame using DCT/IDCT 
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In the design from Figure 1, four DCT coefficients are needed for every newly constructed data point. 
The design implements N*3 impulse responses, each of which are specifically dedicated to a point on 
the new, upsampled sequence. These sub-responses can be represented by a row of four points from 
the resulting matrix of Equation 4. The responses are as follows,  

𝐻(𝑧) =

ℎ=[0] +						ℎ=[1]𝑧:6 +							ℎ=[2]𝑧:3 +							ℎ=[3]𝑧:O

ℎ6[0] +						ℎ6[1]𝑧:6 +								ℎ6[2]𝑧:3 +							ℎ6[3]𝑧:O
. . . .
. . . .
. . . .

ℎOV:6[0] +				ℎOV:6[1]𝑧:6 +				ℎOV:6[2]𝑧:3 +				ℎOV:6[3]𝑧:O

	 

The 4 point processing frame requires 4 coefficients for every row; thus, a total of N*3*4 coefficients are 
needed. We can reduce the number of coefficients by refreshing the frame every sample and only 
interpolating on the final data points. Specifically, interpolants are only inserted between x[2] and x[3] 
(the original third and fourth samples). To do this, we can utilize rows 2*N to 3*N-1. The rows for the 
processing frame are as follows,   

𝐻(𝑧) =

ℎ3V[0] +						ℎ3V[1]𝑧:6 +										ℎ3V[2]𝑧:3 +						ℎ3V[3]𝑧:O

ℎ3V56[0] +		ℎ3V56[1]𝑧:6 +					ℎ3V56[2]𝑧:3 +		ℎ3V56[3]𝑧:O
. . . .
. . . .
. . . .

ℎOV:6[0] +		ℎOV:6[1]𝑧:6 +						ℎOV:6[2]𝑧:3 +		ℎOV:6[3]𝑧:O

 

This means that only N*4 coefficients are needed rather than N*4*3. Basically, the design is a moving 
version of the illustration in Figure 2.   

 

Figure 2:Processing frame between x[2] and x[3] 
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To verify, we have applied a test signal and interpolated based on the moving four point frame from 
Figure 2. Figure 3 shows an example of the original signal, x[m] and the interpolated version, x[n]. 

 

Figure 3:Test signal (above) and interpolated signal using moving frame (below) 

 

Another parameter that must be set is SIZE. This is equal to the number of bits needed to represent the 
integer N. For the demonstration, N is four; thus, we only need SIZE to be equal to 2 bits. Again, this is 
set in the top module. 
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Conversion	and	Sampling	Rates	

Two external devices interface with the ML506 board. The PMOD AD1 and PMOD DA2 act as the input 
and output of the overall system. In order to digitize a signal, the PMODAD1 is used. It contains two 
AD7476A chips from Analog Devices. The DAC121S101 chip from National Semiconductor is used on the 
PMODDA2 to output the signal and the new data points. Both devices use Serial Peripheral Interface 
(SPI) and the module DAC_OUT is used to interface with the external boards.  

The clocking speed on board of the ML506 is 100MHz. Both PMOD boards can only be clocked at a 
maximum frequency of 20 MHz. To be well within spec, we can bring the clock speed down to the 10 
MHz. This will be done using the clock manager in a following section. A single conversion for both the 
ADC and the DAC takes at least 28 external clock cycles in this design. The DAC_OUT module gives the 
user the ability to change the conversion frequency by setting the parameter WAIT_TIME in the top 
module. This parameter must be calculated by the formula below. It should be noted that the sampling 
frequency of the output is the Desired Frequency from the equation below. For the ADC frequency, 
simply divide the Desired Frequency by the scaling factor, N. For the demonstration, the desired 
frequency is 192 KHz so the parameter WAIT_TIME is set to 24. 

𝐷𝑒𝑠𝑖𝑟𝑒𝑑	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 	 10×106

28+WAIT_TIME
	𝐻𝑧				       (5) 

Setup	

At this point, we are ready to implement the design. Power up the ML506 and find a Xilinx JTAG 
programmer to connect to the desktop and the FPGA. The PMODs will be placed on the J6 header pins. 
The AD1 will have pin 1 going to pin 38 on the ML506 and the DA2 will have pin 1 going to pin 52. This is 
illustrated in Figure 4.  

 

Figure 4:J6 headers on ML506 and PMOD connectors 
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Connect the ground to the designated pins on both boards. The ML506 has a ground pin in the last row, 
of the center column on the J6 header. Also, there are pins that output 3.3V. Jump these to the circuit to 
make the correct connections to the ADC and DAC. Next, connect the function generator and scope 
probes to A0 (first pin of the ADC), D0 (first pin of DAC), and D1 (third pin of the DAC) respectably. The 
setup is illustrated in Figure 5 and Figure 6.  

 

Figure 5:Scope probes (black) connected to DAC 
and function generator (red) connected to ADC 

 

   

Figure 6:Board setup and ML506 orientation 
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Implementation	

Now that we have the physical setup, we open up Xilinx ISE to implement the design. Create a 
designated folder for the modules in any appropriate directory. In Xilinx, select File, New Project. The 
window in Figure 7 will pop up.  

 

Figure 7:New Project Wizard  

Name the project DCT_Interpolation. Match the project settings with the ones illustrated in Figure 8. 

 

Figure 8:Project settings 
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Add a Verilog Module by selecting Project, New Source. A window will appear. Select Verilog Module 
and name it TopLevel as shown in Figure 9.  

 

Figure 9:New verilog source for top module 

Copy the DCT INTERPOLATION code from the Appendix and paste it into the module. After saving the 
code, it is evident that there seems to be missing modules from the top level. This is where the 
coefficient look up table and clock divider will be. Prior to inserting these, however, we can map the IO’s 
to our design by adding a User Constraints File. Select Project, New Source, and select Implement 
Constraints File. Name the file “board”. Copy and paste the following code for the .ucf file. 

## INTERNAL CLOCK 100 MHz 
 NET "CLK_100" LOC = "AH15"; 
  
#  PMOD AD1  
 NET "CS" LOC = "AE32"; // Pin 38 on ML 
 NET "Din" LOC = "AG32"; // Pin 40 on ML 
 NET "ADC_CLK" LOC = "AK34"; // Pin 44 on ML 
  
 # Pmod DA2 DAC Pins on J6 Header 
 NET "SYNC" LOC = "AL34"; // Pin 52 on ML  
 NET "DO" LOC = "AL33"; // Pin 54 on ML 
 NET "DO_2" LOC="AM33"; // Pin 56 on ML 
 NET "DAC_CLK" LOC = "AJ34"; // Pin 58 on ML 
  
 # RESET 
 NET "RST" LOC = "V8"; // GPIO South Buttton on Board 
  
 # PMOD AD1  
 NET "CS" FAST; // Pin 38 on ML 
 NET "ADC_CLK" FAST; // Pin 40 on ML 
  
 # Pmod DA2 DAC Pins on J6 Header 
 NET "SYNC" FAST; // Pin 52 on ML  
 NET "DO" FAST; // Pin 54 on ML 
 NET "DO_2" FAST; // Pin 56 on ML 
 NET "DAC_CLK" FAST; // Pin 58 on ML 
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When saved, the project should look like Figure 10.  

 

Figure 10: Project after saving .ucf file 

Generating	Coefficients	

The implementation is similar to a four tap FIR filter; however, we need to have coefficients for each 
index rather than one set impulse response. These coefficients are based on Equation 5 and can be 
placed into a ROM. To generate the coefficients, we must first use MATLAB. Create a new script in 
MATLAB and insert the code provided in the Appendix. Set the variable named SCALE to the integer N 
that was chosen for this design. Run the script. A new .coe file named mycoefile will be saved in the 
MATLAB directory as illustrated in Figure 11.  

 

Figure 11:Path to .coe file from MATLAB 

Due to MATLAB generating coe files that are not compatible with any recent versions of Xilinx, we need 
to manually alter the file. When selected, the coe file will open in a text editor. Remove the text “Radix = 
… CoefData =” and replace it with the following text as shown in Figure 12 and Figure 13. 

memory_initialization_radix=2;   
memory_initialization_vector= 
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Verify that the beginning of the file looks identical to the Figure 13. Save the file and exit MATLAB. Do 
not rerun the script. That would reformat the file back to the incorrect form.  

 

Figure 12: Incorrect format for .coe file 

 

 

Figure 13:Correct format for .coe file 

 

Next, we can insert this ROM by using the Xilinx IP tool. Select Project and New Source. On the window 
that pops up, select IP (CORE Generator and Architecture Wizard) and name the file LUT. The name of 
the module is significant as it is called in the top level of the project. In Memories and Storage, RAMs & 
ROMs, select Block Memory Generator (Figure 14).  

 

Figure 14:IP Core Wizard directory 
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 A wizard will appear (Figure 15). Go to the second page of the wizard and select Single Port ROM as 
illustrated in Figure 16. 

 

Figure 15:Block Memory Generator initial window 

 

 

Figure 16:Single Port ROM 
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 On the next page, input 16 for the Read Width. The Read Depth is equal to the parameter N*4.  

 

Figure 17:Size of Memory 

 

Finally, load the .coe file on page 4 by selecting browse and finding the correct file from the MATLAB 
directory. It is placed in DOCUMENTS/MATLAB folder.  

 

Figure 18: Loading of .coe file 
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To verify that the coefficients are properly loaded into the ROM, select Show to view the contents. After 
verification, select Generate.  

 

Figure 19: Coefficients correclty inserted into memory 

Clock	Divider	

The final component that must be added to the design is the DCM clocking manager. Create a new IP 
Core source as done in the previous section, but this time, name it CLK_DIV. Again the name should be 
exactly the same in order to instantiate it from the top module. Select next and find the “Double clock 
frequency (DCM)” under FPGA Features and Designs, Clocking, Virtex 5, and Choose wizard by basic 
function (Figure 20).  

 

Figure 20: Clock Manager in IP Core Wizard directory 
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Next, a window will appear asking for the HDL that is in use. Select Verilog as shown below.  

 

Figure 21: HDL Selecton 

On the pop-up window that appears, select the CLKDV component, input 100 to the Input Clock 
Frequency, and select 10 for the Divide By Value (Figure 22). Verify that the wizard looks identical to 
Figure 22. Generate the clock divider by clicking next for the remaining windows. When the core is done 
loading, all modules instantiated in the top level should be present.  

 

Figure 22: Clocking options for DCM 
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Test	and	Verification	

With all parameters set and all modules ready, we can select Generate Programming File (Figure 23). 
When the Xilinx is done loading, program the FPGA using IMPACT and assign the corresponding 
configuration file to the device.  

 

Figure 23: Generate programming file for target device 

 

By connecting the probes to pins 38 and 52 on the J6 header, you are able to view the enable for the 
ADC and DAC. Notice that the ADC and DAC are both active low. As illustrated on the scope, SYNC, the 
yellow signal, is enabled N times more than CS, the blue signal. Also, the frequency of CS is 
approximately 48 KHz, four times less than the desired frequency of 192 KHz. Prior to inserting a signal 
into the system, it should be mentioned that the ADC and DAC only operate with positive voltages; thus, 
if one inserts a signal straight from the function generator, an offset must be used to place the signal in 
the proper range (0-3.3V). Input a signal to the ADC. 

 

Figure 24: Enable for DAC (yellow) and ADC (blue) 
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When observing signals at the input and the output, the signal should be uninterrupted. Again, the 
intention is not to alter the content of the signal; rather, the goal is simply to change the resolution of 
the output. Raise the frequency to near half of the sampling frequency. If the scope is used to runstop 
and zoom in on the signal, as illustrated in Figure 26, cursors may be used to view the sampling period. 
Notice the stair-like nature of the signal in Figure 26. The cursors show that the width of the steps in 
time is approximately 5.2μs. This translates to an output rate of approximately 192 KHz and verifies that 
that the sampled signal is being interpolated.  

 

Figure 25:Signal at the input and output 

 

 

Figure 26: Zoomed in scope shot 
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Appendix	

//DCT INTERPOLATION in Verilog HDL 

`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Create Date:    13:15:07 06/28/2014  
// Design Name:  DCT INTERPOLATION 
// Module Name:  TopModule_1 
// Target Devices: Virtex 5, ML506 
// Tool versions: Xilinx ISE 14.4 
// Description: This design is a real-time interpolator that is based on the DCT 
// Parameters:  N is the upsampling integer. 
//   SIZE must be set to the number of bits needed to suppord the integer N 
//   WAIT_TIME allows the user to change the sampling frequency 
////////////////////////////////////////////////////////////////////////////////// 
module TopModule_1#(parameter N=4, WAIT_TIME=78, SIZE=2)   
  (Din, CLK_100, RST,CS, ADC_CLK, SYNC, DO, DO_2, DAC_CLK); 
      
  input Din; 
  input CLK_100;  
  input RST;    
  output CS; 
  output ADC_CLK; 
  output SYNC; 
  output DO;  
  output DO_2; 
  output DAC_CLK;  
   
   
  wire [11:0] value_out;  
  wire [11:0] value_in; 
  wire [SIZE+1:0] coef_index;    
  wire [11:0] sample; 
  wire [15:0] dct_coeff;   
 
  wire [16:0] mat; 
  wire mult_en; 
  wire mult_done;  
   
  wire CLK; 
   
//  wire CLK; // TEST 
//  assign CLK=CLK_100; // TEST 
    
  assign ADC_CLK=CLK; 
  assign DAC_CLK=CLK; 
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  MAC #(4) UU1  ( 
    .CLK(CLK), // in from ML506 
    .en(mult_en),// in from DCT 
    .A(sample),// in 12 bits from DCT 
    .B(dct_coeff), // in 16 bits from LUT 
    .MULT_COMPLETE(mult_done),//  out to DCT 
    .FINAL(mat)// out 16 bits  to DCT 
    ); 
 
     
  DCT #(.N(N),.RANGE(SIZE)) UU2 ( 
    .CLK(CLK), // in from ML506 
    .SAMPLE(value_in), // in 12 bits from DAC_OUT 
    .RST(RST), //in  
    .DAC_done(dac_done),// in from DAT_OUT 
    .MULT_done(mult_done), // in from MAC 
    .COEF(mat), // in 16 bits from MAC 
    .MULT(sample), // out 12 bits to MAC 
    .en_MULT(mult_en), // out to MAC 
    .COEFFICENT(coef_index), // out to LUT 
    .ADC_en(adc_en), // out to DAC_OUT 
    .UPSAMPLE(value_out)// out 12 bitsto DAC_OUT 
    );     
     
  (* BOX_TYPE = "user_black_box" *) 
   
  LUT UU3 ( 
     .clka(CLK), // input clka 
     .addra(coef_index), // input  
     .douta(dct_coeff) // output [15 : 0] douta 
   ); 
    
    
  DAC_OUT #(WAIT_TIME) 
   UU4 ( 
   .CLK(CLK),// 100 MHz Clock 
   .RST(RST), 
   .VALUE_OUT(value_out), // output 12 bit from DCT to DO 
   .DI(Din), // input  
   .ADC_EN(adc_en), // input  
   .VALUE_IN(value_in), // input 12 bit to DCT  
   .CS(CS), // output  
   .DCLK1(CLK), // output  
   .SYNC(SYNC), // output  
   .DO(DO), // output  
   .DO_2(DO_2), // output  
   .DAC_DONE(dac_done) // output to DCT 
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   ); 
    
   CLK_DIV UU5 ( 
    .CLKIN_IN(CLK_100),  
    .CLKDV_OUT(CLK),  
    .CLKIN_IBUFG_OUT(), // Unconnected 
    .CLK0_OUT() // Unconnected 
    ); 
 
   
   
endmodule 
 
 
 
`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Create Date:    20:27:34 05/01/2014  
// Description: This is a MAC that only Adds four levels at a time. "en" initiates  
// the process. MULT_COMPLETE Goes high when MAC is done and the output 
// retains the correct value until reset. 
////////////////////////////////////////////////////////////////////////////////// 
module MAC #(parameter SIZE=4)  
     (input CLK, en,  
     input signed [11:0] A,  
     input signed [15:0] B,  
     output reg MULT_COMPLETE,  
     output signed [16:0] FINAL 
     ); 
    
   reg [4:0] COUNT;   
   wire signed [28:0] Temp1;   
   reg signed [30:0] Temp2; 
    
    
   assign Temp1=$signed({1'b0,A})*$signed(B);// Multiply  
   assign FINAL=Temp2[30:14]; 
    
   always@( posedge CLK )  
   begin 
     
    if( en )  
    begin 
     
     if( COUNT < (SIZE) )  
     begin 
      COUNT<=COUNT+1; 
      Temp2<=Temp1+Temp2; // Accumulate  
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     end 
      
     else  
    // raise COMPLETE flag and output the high 16 bits 
       MULT_COMPLETE<=1; 
     
    end // end if(en) 
     
    else 
    begin 
     // RESET  
     MULT_COMPLETE<=0; 
     COUNT<=0; 
     Temp2<=0; 
    end  
      
   end // always 
    
   initial  
   begin 
    // Initial Conditions 
    COUNT=0; 
    Temp2=0; 
    MULT_COMPLETE=0;    
   end 
    
endmodule 
 
 
////////////////////////////////////////////////////////////////////////////////// 
// Create Date:    10:23:17 04/28/2014  
// Module Name:    DAC_OUT 
// Description: The DAC_OUT module is the front end of the design. It interfaces  
//      directly with the PMOD boards.    
////////////////////////////////////////////////////////////////////////////////// 
module DAC_OUT#(parameter ADDED_TIME=12) 
     (input CLK, RST, 
     input [11:0] VALUE_OUT, //TO DAC 
     input DI, 
     input ADC_EN, 
     output reg [11:0] VALUE_IN, // TO FPGA for Processing 
     output reg CS,  
     output DCLK1,  
     output reg SYNC, DO, DO_2, DAC_DONE ); 
      
 // Used to input and output when enabled 
 reg [4:0] COUNT; 
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 // temp register for original samples 
 reg [11:0] Temp; 
  
 integer TIMER=0; 
  
 assign DCLK1=CLK; 
 
 always@( posedge CLK ) 
 begin 
  if( ~RST )  
  begin 
   COUNT<=COUNT+1; 
    
   if(COUNT<11 ) 
   begin 
    DO<=0;  
    DO_2<=0; 
    DAC_DONE<=0; 
   end 
    
   // Begin data conversion by  setting ADC and DAC to '0' 
   else if( COUNT >= 11  && COUNT <= 14 )  
   begin 
    SYNC<=1'b0; 
     if( ADC_EN )  
      CS<=1'b0;  
    DO<=0;  
    DO_2<=0; 
   end 
    
   // 12 bit words are sent and recieved  
   else if( COUNT<=26 )  
   begin 
    DO<=VALUE_OUT[26-COUNT]; 
    DO_2<=Temp[26-COUNT]; 
     
    if( ADC_EN )  
    begin 
     VALUE_IN[0]<=DI; 
     //Shift Data Into ADC 
     VALUE_IN[11:1]<=VALUE_IN[10:0]; 
    end 
   end 
    
   // Turn off enablers 
   else if( COUNT==27 )  
   begin 
    Temp<=VALUE_IN; 
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    CS<=1'b1; 
    SYNC<=1'b1; 
     
    if( TIMER==ADDED_TIME ) 
    begin 
     COUNT<=0; 
     TIMER<=0; 
     DAC_DONE<=1; 
    end 
     
    else  
    begin 
     COUNT<=COUNT; 
     TIMER<=TIMER+1; 
     DAC_DONE<=0; 
    end   
     
   end 
    
  end //RST 
 
  else  
   COUNT<=0; 
    
    
 end 
  
 initial  
 begin 
  CS=1;  
  DAC_DONE=0; 
  COUNT=0; 
  SYNC=1; 
 end 
 
endmodule 
 
 
 
 
`timescale 1ns / 1ps 
////////////////////////////////////////////////////////////////////////////////// 
// Create Date:    01:01:16 05/15/2014  
// Module Name:    DCT  
// Description: This module acts as the controller for the design.  
////////////////////////////////////////////////////////////////////////////////// 
module DCT #(parameter N=4,  RANGE=2) //N interpolants 
   (input CLK,  
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   input [11:0] SAMPLE,  
   input RST, 
   input DAC_done,  
   input MULT_done, 
   input [16:0] COEF, 
   output reg [11:0] MULT,  
   output reg en_MULT, 
   output [1+RANGE:0] COEFFICENT,  
   output reg ADC_en,  
   output reg [11:0] UPSAMPLE ); 
 
  integer j; 
      
  // Neg Edge Flag 
  reg CONVERSION_flag; 
   
  reg [11:0] A [0:3]; //Sample Storage 
  reg [RANGE-1:0] index; // interpolant index 
  reg [1:0] Xc; // coefficient  
  
  assign COEFFICENT ={index,Xc}; 
  
  // Next STATE Logic 
  
  always@( posedge CLK )  
  begin 
   
   // RESET 
   if( RST )  
   begin 
    UPSAMPLE<=0; 
    A[0]<=0; 
    A[1]<=0; 
    A[2]<=0; 
    A[3]<=0; 
    index<=0; 
    Xc<=0; 
    CONVERSION_flag<=0; 
   end // RESET 
    
   else  
   begin 
     
    // Conversion NOT in progress 
    if( ~CONVERSION_flag )  
    begin 
     MULT<=A[Xc]; 
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     // Only increment up to three 
     if( Xc==2'b11 ) 
      Xc<=Xc; 
     else  
      Xc<=Xc+1; 
      
     en_MULT<=1'b1;  
       
     if( MULT_done ) 
     begin 
      en_MULT<=0; 
      Xc<=0; 
      CONVERSION_flag<=1; 
       
      if( index==N-1 ) 
       ADC_en<=1; 
      else 
       ADC_en<=0; 
       
      // Roof and floor protection 
      if( COEF[16] )  
       UPSAMPLE<=0; 
      else if( |COEF[15:12] ) 
       UPSAMPLE<=12'b111_111_111_111; 
      else  
       UPSAMPLE<=COEF[11:0];   
     end // MULT_done   
    end // Conversion Flag 
     
    else 
    begin 
     
     if( DAC_done )  
     begin 
      
      if( ADC_en )  
      begin 
       A[3]<=SAMPLE; 
       A[2]<=A[3]; 
       A[1]<=A[2]; 
       A[0]<=A[1]; 
       index<=0; 
       Xc<=0; 
       ADC_en<=0; 
      end // ADC_en 
       
      else  
      begin 
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       index<=index+1; 
       Xc<=0; 
      end // ADC_en/else 
       
      CONVERSION_flag<=0; 
     end // DAC_done 
      
     else  
      CONVERSION_flag<=1; 
    end // else 
     
     
   end // else (~reset) 
   
  end // always  
   
    
  initial  
  begin 
 
   CONVERSION_flag=0; 
   Xc=0; 
   index=0; 
   for( j=0;j<=3;j=j+1)  
   begin 
    A[j]=0; 
   end 
  end 
   
endmodule 
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%%MATLAB Script  

clc 
clear all 
close all 
%%%%%%%%%%%%%%%%%%%%% 
% This script is used to generate coefficients that  
% are needed to interpolate. It is important that  
% the SCALE variable below is set to the number N from the 
% top level module from the design in Xilinx. 
%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%% 
%%%%PARAMETER%%%%%%%% 
SCALE=4; 
%%%%%%%%%%%%%%%%%%%%% 
  
% Indexes 
n=0:3; 
k=0:3; k=k'; 
m=0:4*SCALE-1; m=m'; 
  
% % Forward DCT  
Forward=cos(pi.*k*(2*n+1)/8); 
Forward(1,1:end)=ones(1,4)*0.5; 
  
k=k'; 
% % INVERSE DCT 
Inverse=cos(pi.*(2*m+SCALE)*k/(SCALE*8)); 
% % Matrix Multiplication of full system 
DCTINTERP=Inverse*Forward/2; 
  
% % Isolate needed coefficients 
h1=DCTINTERP(2*SCALE+2:3*SCALE+1,:); 
% % Reshape to fit one dim array 
h1=reshape(h1',4*(SCALE),1); 
h=dfilt.dffir(h1); 
% % Quantize Coeff. 
set(h,'arithmetic','fixed'); 
h.CoeffWordLength  = 16; 
coewrite(h,2,'mycoefile'); 
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